Numerical integration methods for the solution of singular integral equations
نویسندگان
چکیده
منابع مشابه
CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملNumerical solution for a class of singular integral equations
This paper is concerned with finding approximate solution for the singular integral equations. Relating the singular integrals to Cauchy principal-value integrals, we expand the kernel and the density function of singular integral equation by the sum of the chebyshev polynomials of the first, second, third and fourth kinds. Some numerical examples are presented to illustrate the accuracy and ef...
متن کاملcas wavelet method for the numerical solution of boundary integral equations with logarithmic singular kernels
in this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the laplacian equation. themethod is based on the use of the galerkin method with cas wavelets constructed on the unit interval as basis.this approach utilizes the non-uniform gauss-legendre quadrature rule for ...
متن کاملOptimized Methods for Improving the Numerical Solution of Integral Equations
Abstract Selecting the appropriate basis for approximating the numerical solution of an integral equation has an important role in making the precise solution. It can be selected to minimize the error of any unknown function of an integral equation. Fourier series approximation can be used as a basis for determining the unknown coefficients of the series when the unknown function is periodic. I...
متن کاملANALYTICAL-NUMERICAL SOLUTION FOR NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE
Using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of Hammerstein type . The mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). The procedure of this method is so fast and don't need high cpu and complicated programming. The advantages of this method are that we can applied for those integral equations whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly of Applied Mathematics
سال: 1977
ISSN: 0033-569X,1552-4485
DOI: 10.1090/qam/445873